Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 239(1): 19­31, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307151

RESUMO

γ-Melanocyte stimulating hormone (γ-MSH) is an endogenous agonist of the melanocortin 3-receptor (MC3R). Genetic disruption of MC3Rs increases adiposity and blunts responses to fasting, suggesting that increased MC3R signaling could be physiologically beneficial in the long term. Interestingly, several studies have concluded that activation of MC3Rs is orexigenic in the short term. Therefore, we aimed to examine the short- and long-term effects of γ-MSH in the hypothalamic arcuate nucleus (ARC) on energy homeostasis and hypothesized that the effect of MC3R agonism is dependent on the state of energy balance and nutrition. Lentiviral gene delivery was used to induce a continuous expression of γ-Msh only in the ARC of male C57Bl/6N mice. Parameters of body energy homeostasis were monitored as food was changed from chow (6 weeks) to Western diet (13 weeks) and back to chow (7 weeks). The γ-MSH treatment decreased the fat mass to lean mass ratio on chow, but the effect was attenuated on Western diet. After the switch back to chow, an enhanced loss in weight (−15% vs −6%) and fat mass (−37% vs −12%) and reduced cumulative food intake were observed in γ-MSH-treated animals. Fasting-induced feeding was increased on chow diet only; however, voluntary running wheel activity on Western diet was increased. The γ-MSH treatment also modulated the expression of key neuropeptides in the ARC favoring weight loss. We have shown that a chronic treatment intended to target ARC MC3Rs modulates energy balance in nutritional state-dependent manner. Enhancement of diet-induced weight loss could be beneficial in treatment of obesity.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , gama-MSH/metabolismo , Adiposidade , Animais , Peso Corporal , Dieta Ocidental , Privação de Alimentos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Obesidade/terapia , Redução de Peso , gama-MSH/genética
2.
Nutr Diabetes ; 5: e151, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25915740

RESUMO

OBJECTIVE: Endocannabinoids and neuropeptide Y (NPY) promote energy storage via central and peripheral mechanisms. In the hypothalamus, the two systems were suggested to interact. To investigate such interplay also in non-hypothalamic tissues, we evaluated endocannabinoid levels in obese OE-NPY(DßH) mice, which overexpress NPY in the noradrenergic neurons in the sympathetic nervous system and the brain. METHODS: The levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were measured in key regulatory tissues, that is, hypothalamus, pancreas, epididymal white adipose tissue (WAT), liver and soleus muscle, over the development of metabolic dysfunctions in OE-NPY(DßH) mice. The effects of a 5-week treatment with the CB1 receptor inverse agonist AM251 on adiposity and glucose metabolism were studied. RESULTS: 2-AG levels were increased in the hypothalamus and epididymal WAT of pre-obese and obese OE-NPY(DßH) mice. Anandamide levels in adipose tissue and pancreas were increased at 4 months concomitantly with higher fat mass and impaired glucose tolerance. CB1 receptor blockage reduced body weight gain and glucose intolerance in OE-NPY(DßH) to the level of vehicle-treated wild-type mice. CONCLUSIONS: Altered endocannabinoid tone may underlie some of the metabolic dysfunctions in OE-NPY(DßH) mice, which can be attenuated with CB1 inverse agonism suggesting interactions between endocannabinoids and NPY also in the periphery. CB1 receptors may offer a target for the pharmacological treatment of the metabolic syndrome with altered NPY levels.

3.
Acta Physiol (Oxf) ; 213(4): 902-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25482272

RESUMO

AIM: Neuropeptide Y (NPY) co-localized with noradrenaline in central and sympathetic nervous systems seems to play a role in the control of energy metabolism. In this study, the aim was to elucidate the effects and pathophysiological mechanisms of increased NPY in catecholaminergic neurones on accumulation of body adiposity. METHODS: Transgenic mice overexpressing NPY under the dopamine-beta-hydroxylase promoter (OE-NPY(DßH) ) and wild-type control mice were followed for body weight gain and body fat content. Food intake, energy expenditure, physical activity, body temperature, serum lipid content and markers of glucose homoeostasis were monitored. Thermogenic and lipolytic responses in adipose tissues, and urine catecholamine and tissue catecholamine synthesizing enzyme levels were analysed as indices of sympathetic tone. RESULTS: Homozygous OE-NPY(DßH) mice showed significant obesity accompanied with impaired glucose tolerance and insulin resistance. Increased adiposity was explained by neither increased food intake or fat absorption nor by decreased total energy expenditure or physical activity. Adipocyte hypertrophy and decreased circulating lipid levels suggested decreased lipolysis and increased lipid uptake. Brown adipose tissue thermogenic capacity was decreased and brown adipocytes filled with lipids. Enhanced response to adrenergic stimuli, downregulation of catecholamine synthesizing enzyme expressions in the brainstem and lower adrenaline excretion supported the notion of low basal catecholaminergic activity. CONCLUSION: Increased NPY in catecholaminergic neurones induces obesity that seems to be a result of preferential fat storage. These results support the role of NPY as a direct effector in peripheral tissues and an inhibitor of sympathetic activity in the pathogenesis of obesity.


Assuntos
Neurônios Adrenérgicos/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Sistema Nervoso Simpático/fisiologia , Tecido Adiposo Marrom , Animais , Metabolismo Energético , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...